2023

Penrith High School HIGHER SCHOOL CERTIFICATE

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen.
- Calculators approved by NESA may be used.
- A reference sheet is provided.
- In Questions 11–32 show relevant mathematical reasoning and/or calculations.
- Write your NESA ID below, on the Multiple-Choice Answer Sheet and the front of Booklets 1, 2 and 3.

Total marks: 100

Section I – 10 marks (pages 3-8)

- Attempt Questions 1–10
- Allow about 15 minutes for this section.

Section II - 90 marks (pages 9-30)

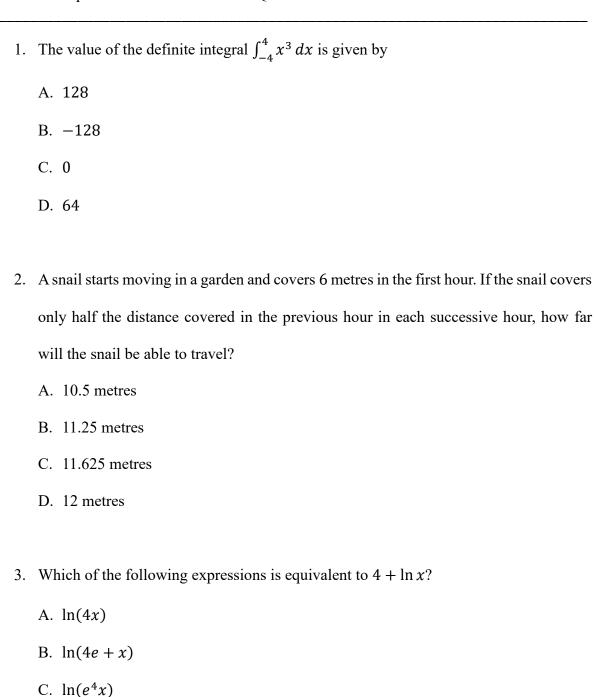
- Attempt Questions 11–32
- Allow about 2 hours and 45 minutes for this section.

ole Choice	Differentiation & applications of Differential Calculus	Statistics	Algebra & Graphing Functions	Integration	Logarithms & & Exponentials	Probability	Series & Financial mathematic s	Trigono metry
Multiple	/1	9 /1	7	/1	3	46	25	/1
							Total:	/10

Differentiation And applications of Differential Calculus	Statistics	Algebra & Graphing Functions	Integration	Logarithms & Exponentials	Probabilit y	Series & Financial mathematics	Trigonomet ric functions
/21	/5	/6	/16	/6	/11	/13	/12
						Total:	/90

Student NESA Number _.	
Teacher	

Section I


10 marks

Attempt questions 1-10

D. $e^4 \ln(x)$

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

4. The discrete random variable X has the following distribution:

X	0	1	2	3
P(X=x)	0.15	а	0.35	2b

Given that E(X) = 1.5, find the values of a and b.

A.
$$a = 0.15$$
 and $b = 0.7$

B.
$$a = 0.35$$
 and $b = 0.075$

C.
$$a = 0.35$$
 and $b = 0.15$

D.
$$a = 0.15$$
 and $b = 0.35$

5. \$1350 is invested into an account earning 3% p.a. for 5 years. Interest is compounded quarterly. Which expression correctly evaluates the amount of interest earned?

A.
$$1350 \times 1.0075^{20}$$

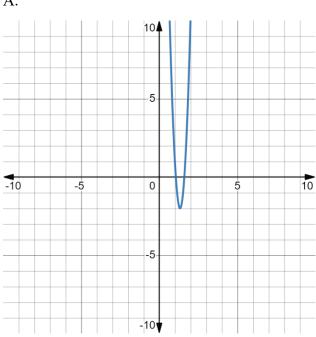
B.
$$1350 \times 1.03^5$$

C.
$$1350 \times 1.0075^{20} - 1350$$

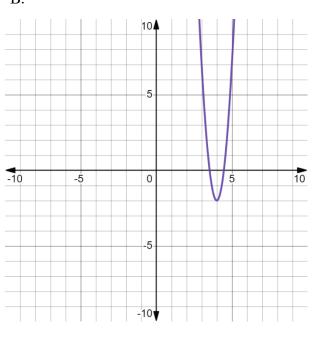
D.
$$1350 \times 1.03^5 - 1350$$

6. A dice is rolled twice and the uppermost numbers are added together.

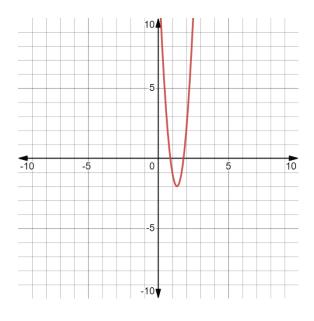
Which of the following events has a probability of $\frac{1}{18}$?

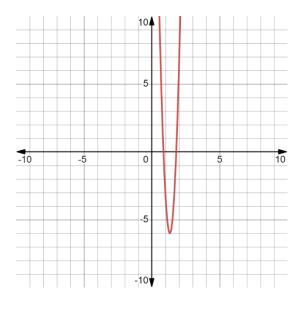

- A. Both numbers rolled are the same
- B. The sum is 5
- C. The sum is 3
- D. The sum is 12

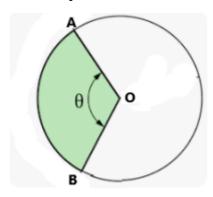
7. The graph of $y = x^2$ undergoes the following sequence of transformations:


- Translation 4 units right
- Dilation horizontally by a factor of $\frac{1}{3}$
- Translation 2 units down
- Dilation vertically by a factor of 3

The graph of the resulting equation is given by


A.

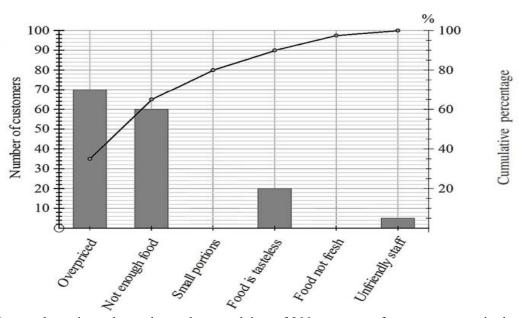

B.


C.

D.

8. In a circle, an arc AB subtends an angle of θ radians at the centre shown below. The radius of the circle is r cm and the perimeter of the minor sector AOB is 4 cm.

The angle θ and the area of the sector AOB is given by

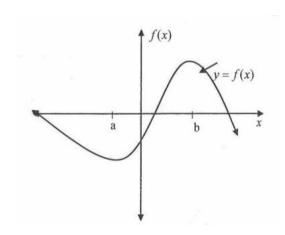

A.
$$\theta = \frac{4}{r} - 2 \text{ and } A = 2r - r^2$$

B.
$$\theta = \frac{4}{r}$$
 and $A = 2r$

C.
$$\theta = \frac{4}{r} - 2 \text{ and } A = 4r - r^2$$

D.
$$\theta = \frac{4}{r}$$
 and $A = 4r$

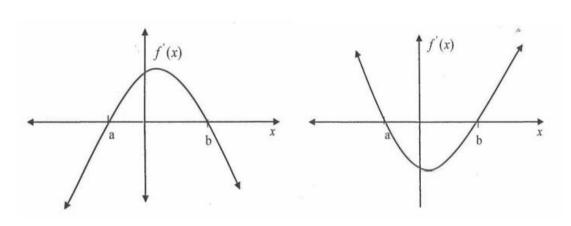
9.



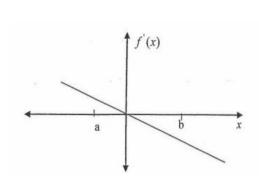
The Pareto chart given above shows the complaints of 200 customers from a restaurant in the area. The columns for the "small portions" and "food not fresh" complaints are missing.

The approximate total number of complaints for "Small portions" is

- A. 45 people
- B. 30 people
- C. 40 people
- D. 80 people


10. The diagram given below shows the graph of y = f(x).

Which of the following shows the graph of y = f'(x)?


A.

B.

C.

D,

NESA Number:					
ol					

2023

Penrith High School HSC TRIAL EXAMINATION

Геасher:	
----------	--

Mathematics Advanced

Section II Answer Booklet 1

90 marks

Attempt Questions 11–32

Allow about 2 hours and 45 minutes for this section.

Booklet 1 – Attempt Questions 11 – 20 (30 marks)

Booklet 2 – Attempt Questions 21 – 26 (30 marks)

Booklet 3 – Attempt Questions 27 – 32 (30 marks)

Instructions

- Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.
- Write your NESA ID above.

Trigonome tric Functions	Algebra & Graphing	Integratio n	Series & Financial Mathem atics	Probability	Differentiation & Applications of Differentiation	Logarithm s & Exponenti als
/3	/6 14 17	/3	/3	/9 12 18	/3	/3

Please Turn Over

Question 11 (3 marks)

A student was asked to differentiate $f(x) = 2x^2 + x$ using the first Principles of Differential Calculus. The student began the solution as shown below.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Complete the solution.	3
	• •
	• •
Question 12 (1 mark)	
A and B are events of a sample space. Given that $P(A \cap B) = 0.15$ and $P(A B) = 0.2$, calculate $P(B)$ for this sample space.	1
	• •

Question 13 (3 marks)
Solve $2 \sin 2\theta - 1 = 0$ for $0 \le \theta \le 2\pi$.
Question 14 (3 marks)
Let $f(x) = x - 2$ and $g(x) = \frac{1}{x} + 1$,
a. find $g(f(x))$.
b. Find the domain and range of $g(f(x))$ in interval notation.
Question 15 (3 marks)
A function $f(x)$, has a derivative given by $f'(x) = 3x^2 - x + 6$. The function curve passes
through the point (0, 1). Find the equation of the function.

Question 16 (3 marks)

The second term of an arithmetic sequence is 12. The fifteenth term is 64.	
Calculate the 25th term.	3
	• • •
	• • •
	•••
Question 17 (3 marks)	
Consider the curve given by $f(x) = x^2 \ln x $	3
Is $f(x) = x^2 \ln x $ an odd or an even function or neither? Justify your response.	
	••

Question 18 (8 marks)

The probability distribution for a discrete random variable X is given by

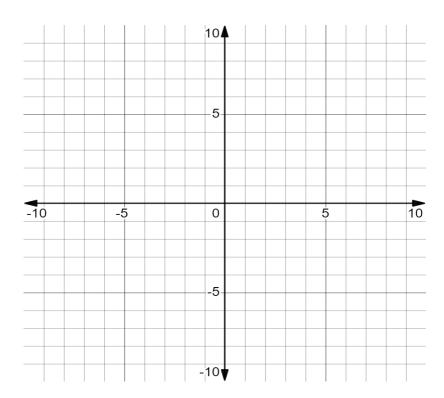
$$P(X = x) = \begin{cases} kx, & x = 1, 2, 3\\ k(6 - x) & x = 4, 5, 6 \end{cases}$$

a.	Show that $k = \frac{1}{9}$.	1
b.	Complete the Probability distribution table given below.	2
	X 1 2 3 4 5 6	
	P(X=x)	
c.	Hence, calculate its expected value.	2
d.	Calculate the variance and the standard deviation correct to 2 decimal places.	2
		· • • •
e.	Find $P(2 \le X \le 4)$.	1

Question 19 (3 marks)

Using the logarithm laws, show that $\frac{d}{dx} \left(\ln \sqrt{\frac{1+x}{1-x}} \right) = \frac{1}{1-x^2}$	
	• • • •
	• • • •
	• • • •
	• • • •

Proceed to Answer Booklet 2 for Questions 20-24


Question 20 (8 marks)

Consider the curve given by $f(x) = 2x^3 - 5x^2 + 6$.

a.	Find the coordinates of the stationary points and determine for their nature. 3
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
b.	Find the coordinates of any point(s) of inflection.
••••	
••••	
••••	
••••	

c. Hence, sketch the curve labelling the stationary points, point(s) of inflection (if any) and y – intercept. Do Not determine the x – intercepts of the curve.

Question 21 (2 marks)

Consider the series given by $1 + 3x + 9x^2 + 27x^3 + \cdots$

a. Show that it is a geometric series.

1

1

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

b. Find the range of values of x for which the series has a limiting sum.

.....

Question 22 (6 marks)

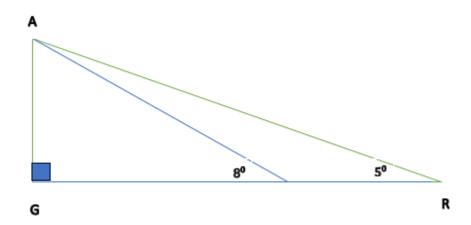
a.	Using the quotient rule, show that $\frac{d}{dx} \left(\frac{\cos x}{\sin x} \right) =$	$-cosec^2x$ 3	
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
b.	Evaluate $\int_{0}^{8} x^{-2} dx$ Leave your engineer in	exact form.	3
	Evaluate $\int_5^8 \frac{x-2}{x^2-4x} dx$. Leave your answer in		
			•
			•
			•
			•

Question 23 (5 marks)

Six Penrith High School Year 12 Students participated in the javelin and discus throwing events at the Athletics Carnival this year. Their distances (in metres) were recorded in the table below.

Student Names	Distance (Javelin)	Distance (Discus)
Saatvik	8	18
Rithwik	60	81
Yesh	51	57
Angelo	48	48
Darwin	29	25
Lisa	36	47

The relationship between the two events is being examined. The distance thrown in javelin is the independent variable and the distance thrown in discus is the dependent variable.


a.	Calculte the Pearson correlation coefficient, r , for the above data set correct to 3	
	decimal places. Explain clearly what this value indicates in this context.	2
		•••
		•••
		••••
b.	Calculate the equation of the least squres regression line, rounding numbers correct	et to
	1 decimal place where necessary.	2
		•••
		•••
•••••		•••
		• • • •

C.	Saatvik concluded after the event that "Yesh was able to throw his javelin a greater
	distance because he threw his discus a greater distance, and being successful in one
	skill transferred to the other skill". Saatvik's statement may not be correct. Why?
	1
Quest	ion 24 (5 marks)
The ac	ecceleration of a particle at any time t is given by $\ddot{x} = 2 \cos \frac{\pi t}{3}$.
a.	Find the velocity and displacement of the particle at any time t, given that the particle is initially at rest at the origin.
•••••	
•••••	

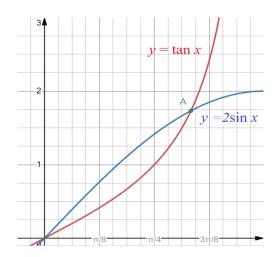
b.	Find the time when the particle first returns to the origin.	2
••••		•••
••••		•••
••••		•••
Ques	stion 25 (2 marks)	
A su	rvey of a certain district showed that 4% of the families have 1 child, 34% have 2 child	ren,
40%	have 3 children, and 15% have more than 3 children. A family from the district is select	eted
at rai	ndom. Find the probability that the family will have at most 1 child.	2
••••		•••
Que	stion 26 (2 marks)	
Shov	w that the graph given by $f(x) = \frac{1}{1+e^{-x}}$, $x \ge 0$ is an increasing function for all value	les
of x	in the given domain.	2
••••		•••
••••		
••••		•••
••••		• • •

Proceed to Answer Booklet 3 for Questions 26-31

Question 27 (4 marks)

Roberto, R in the World cup, knows that from his position directly in front of the goalkeeper, G, he must kick the ball through the point A to score a goal. If he runs the ball forward an extra five metres, his kicking angle increase from 5° to 8° .

a. Calculate Roberto's kicking distance to A, from the 8° mark, correct to 2 deci	mal places. 2
b. Find how far Roberto was from the goalkeeper at the 5° mark, correct to 1 dec	cimal place. 2


Question 28 (5 marks)

A farmer accidently spread a dangerous chemical on a paddock. The concentration of the chemical in the soil was initially measured at 5 kg/ha. One year later the concentration was found to be half of the initial concentration.

It is known that the concentration, C, is given by $C = C_0 e^{-kt}$, where C_0 and k are constants, and t is measured in years.

a.	Evaluate C_0 and k . Leave your answers in exact forms.	3
•••		• • • • •
•••		
•••		
b.	It is safe to use the paddock when the concentration is below 0.2 kg/ha. How long must the farmer wait after the accident before the paddock can be used? Give your answer years, correct to one decimal place.	
•••		
•••		
•••		
•••		• • • •
•••		
•••		
		• • • •
•••		

Question 29 (4 marks)

The diagram above shows the curves $y = \tan x$ and $y = 2 \sin x$ for $0 \le x \le \frac{\pi}{2}$.

a.	Show that the coordinates of A are $\left(\frac{\pi}{3}, \sqrt{3}\right)$.

.....

b. Show that $\frac{d}{dx}(\ln \cos x) = -\tan x$.

c. Hence, find the area between $y = \tan x$ and $y = 2 \sin x$ for $0 \le x \le \frac{\pi}{2}$.

.....

......

.....

Question 30 (4 marks)

a. Complete the table below for $y = \sqrt{\cos x}$.

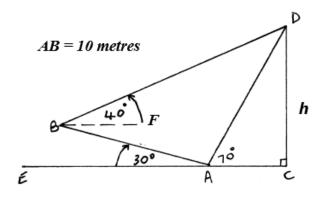
2

x		0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
y	7			0.841		

b.	Hence estimate $\int_0^{\frac{\pi}{2}} \sqrt{\cos x} \ dx$ using the trapezoidal rule with 4 applications.

Question 31 (8 marks)

Mr Pollard borrowed \$500 000 from his bank to buy an apartment. The loan is to be repaid in equal monthly instalments. The interest rate is 8.4% p.a., calculated monthly.


a.	Show that the interest for the first month is \$3500.	1
• • • • • • •		
•••••		•
• • • • • • • • • • • • • • • • • • • •		

b.	Why is it not advisable that Mr Pollard's monthly repayments be \$3500?	1
		•
c.	Mrs Briggs thinks Mr Pollard should cut down on his unnecessary expenses and budget himself to pay \$5000 per month off the loan.	
	Show that $A_2 = 500000 \times 1.007^2 - 5000(1 + 1.007)$. where A_2 is the amount owing after two repayments,	3
•••••		•
		•
•••••		••
d.	Hence, find an expression for A_n , the amount owing after the n th repayment.	1
•••••		•
•••••		•

How long will it take for Mr Pollard to pay off the loan?	2

Question 32 (5 marks)

Lina is standing on a footpath at point A. From this position she looks up to the top of a vertical tower, CD, at an angle of elevation of 70° . Lina then turns around and walks up 10 m up a ramp AB, inclined at an angle of 30° to the horizontal footpath. From her new position, B, the top of the tower is observed at an angle of elevation of 40° . This information is shown in the diagram below.

a.	Find the size of $\angle ABD$, and of $\angle BDA$. DO NOT provide any reasons.	2
•••		
•••		
b.	Find the length of AD.	2
•••		
•••		
•••		•
c.	Hence, find the height of the tower correct to 1 decimal place.	1
•••		

2023

Penrith High School HIGHER SCHOOL CERTIFICATE

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen.
- Calculators approved by NESA may be used.
- A reference sheet is provided.
- In Questions 11–32 show relevant mathematical reasoning and/or calculations.
- Write your NESA ID below, on the Multiple-Choice Answer Sheet and the front of Booklets 1, 2 and 3.

Total marks: 100

Section I – 10 marks (pages 3-8)

- Attempt Questions 1–10
- Allow about 15 minutes for this section.

Section II - 90 marks (pages 9-30)

- Attempt Questions 11–32
- Allow about 2 hours and 45 minutes for this section.

ole Choice	Differentiation & applications of Differential Calculus	Statistics	Algebra & Graphing Functions	Integration	Logarithms & & Exponentials	Probability	Series & Financial mathematic s	Trigono metry
Multiple	/1	9 /1	7	/1	/1 3	/2	2 5	/1
							Total:	/10

Differentiation And applications of Differential Calculus	Statistics	Algebra & Graphing Functions	Integration	Logarithms & Exponentials	Probabilit y	Series & Financial mathematics	Trigonomet ric functions
/21	/5	/6	/16	/6	/11	/13	/12
						Total:	/90

Student NESA Number _	
Teacher	

Section I

10 marks

Attempt questions 1-10

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

- 1. The value of the definite integral $\int_{-4}^{4} x^3 dx$ is given by
 - A. 128
 - B. -128
 - C. 0
 - D. 64
- 2. A snail starts moving in a garden and covers 6 metres in the first hour. If the snail covers only half the distance covered in the previous hour in each successive hour, how far will the snail be able to travel?
 - A. 10.5 metres
 - B. 11.25 metres
 - C. 11.625 metres
 - D. 12 metres
- 3. Which of the following expressions is equivalent to $4 + \ln x$?
 - A. ln(4x)
 - B. ln(4e + x)
 - C. $ln(e^4x)$
 - D. $e^4 \ln(x)$

4. The discrete random variable X has the following distribution:

X	0	1	2	3
P(X=x)	0.15	а	0.35	2b

Given that E(X) = 1.5, find the values of a and b.

A.
$$a = 0.15$$
 and $b = 0.7$

B.
$$a = 0.35$$
 and $b = 0.075$

C.
$$a = 0.35$$
 and $b = 0.15$

D.
$$a = 0.15$$
 and $b = 0.35$

5. \$1350 is invested into an account earning 3% p.a. for 5 years. Interest is compounded quarterly. Which expression correctly evaluates the amount of interest earned?

A.
$$1350 \times 1.0075^{20}$$

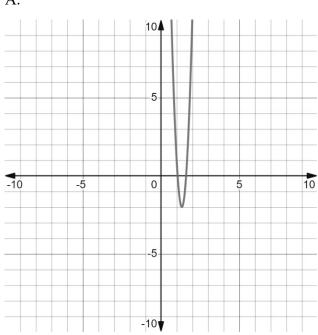
B.
$$1350 \times 1.03^5$$

C.
$$1350 \times 1.0075^{20} - 1350$$

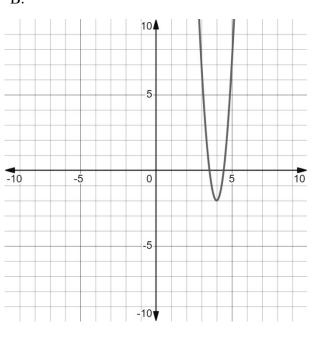
D.
$$1350 \times 1.03^5 - 1350$$

6. A dice is rolled twice and the uppermost numbers are added together.

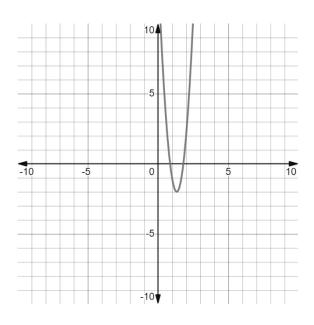
Which of the following events has a probability of $\frac{1}{18}$?

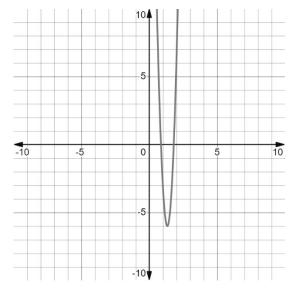

- A. Both numbers rolled are the same
- B. The sum is 5

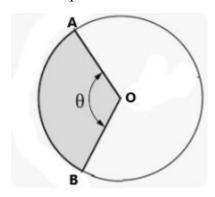
7. The graph of $y = x^2$ undergoes the following sequence of transformations:


- Translation 4 units right
- Dilation horizontally by a factor of $\frac{1}{3}$
- Translation 2 units down
- Dilation vertically by a factor of 3

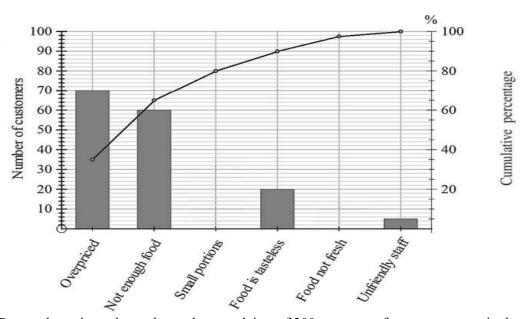
The graph of the resulting equation is given by


A.


В.


C.

D.


8. In a circle, an arc AB subtends an angle of θ radians at the centre shown below. The radius of the circle is r cm and the perimeter of the minor sector AOB is 4 cm.

The angle θ and the area of the sector AOB is given by

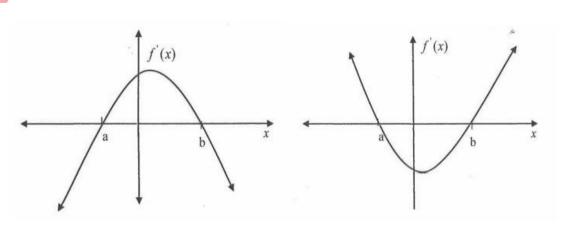
- A. $\theta = \frac{4}{r} 2 \text{ and } A = 2r r^2$
- B. $\theta = \frac{4}{r}$ and A = 2r
- C. $\theta = \frac{4}{r} 2 \text{ and } A = 4r r^2$
- D. $\theta = \frac{4}{r}$ and A = 4r

9.

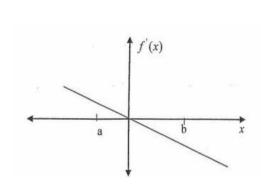
The Pareto chart given above shows the complaints of 200 customers from a restaurant in the area. The columns for the "small portions" and "food not fresh" complaints are missing.

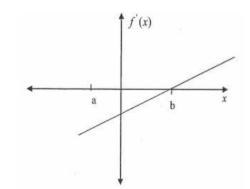
The approximate total number of complaints for "Small portions" is

- A. 45 people
- B. 30 people
- C. 40 people
- D. 80 people


10. The diagram given below shows the graph of y = f(x).

Which of the following shows the graph of y = f'(x)?


A.


B.

C.

D,

End of SECTION I

NESA Number:					
ol					
·OI					

2023

Penrith High School HSC TRIAL EXAMINATION

Feacher:	

Mathematics Advanced

Section II Answer Booklet 1

90 marks

Attempt Questions 11–32

Allow about 2 hours and 45 minutes for this section.

Booklet 1 – Attempt Questions 11 – 20 (30 marks)

Booklet 2 – Attempt Questions 21 – 26 (30 marks)

Booklet 3 – Attempt Questions 27 – 32 (30 marks)

Instructions

- Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.
- Write your NESA ID above.

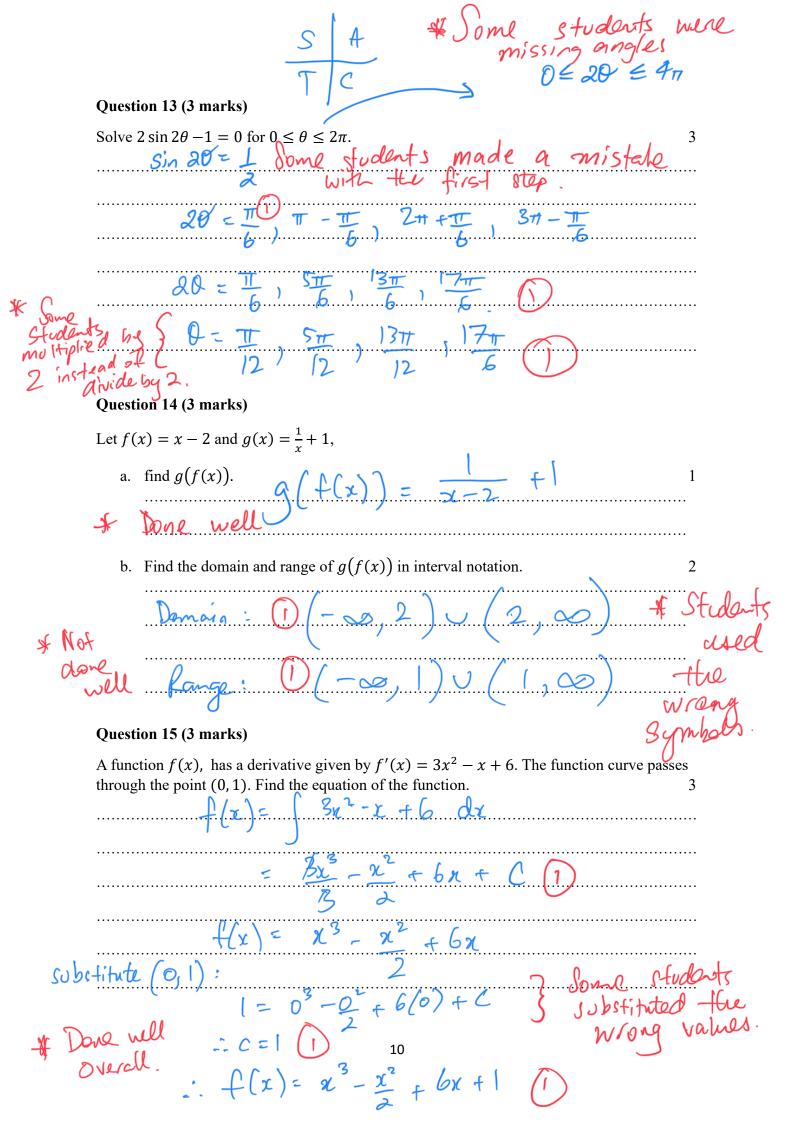
Trigonome tric Functions	Algebra & Graphing	Integratio n	Series & Financial Mathem atics	Probability	Differentiation & Applications of Differentiation	Logarithm s & Exponenti als
/3	/6 14 17	/3	/3	/9 12 18	/3 11	/3

$f(x+h) = 2(x+h)^2 + (x+h)$

Question 11 (3 marks)

A student was asked to differentiate $f(x) = 2x^2 + x$ using the first Principles of Differential Calculus. The student began the solution as shown below.

Complete the solution. 3 Overall, Question 12 (1 mark) A and B are events of a sample space. Given that $P(A \cap B) = 0.15$ and P(A|B) = 0.2, calculate P(B) for this sample space. 1


 $D/A \circ B = 0.15$

 $P(A \cap B) = 0.15$ $P(A \cap B) = P(A \cap B)$ P(B)

0.2 = 0.15

0.2 P(B) = 0.15P(B) = 0.15 = 0.75

* This question was done well

Question 16 (3 marks) # Some 8 hoderts wrote the formula wrong. The second term of an arithmetic sequence is 12. The fifteenth term is 64. Calculate the 25th term. $T_2 = a + d$ 3 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 4 # This question $T_2 = a + d$ 4 # This question $T_2 = a + d$ 4 # This question $T_2 = a + d$ 4 # This question $T_2 = a + d$ 4 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 4 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 4 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 3 # This question $T_2 = a + d$ 4 # This $T_2 = a + d$ 4 #				a + (n-1)		0 (
Calculate the 25th term. $T_2 = a + d$ This question Not the second of the control of the con		Question 16 (3 marks)				formula
The state of the curve given by $f(x) = x^2 \ln x $ Some students $f(x) = x^2 \ln x \text{ an odd or an even function or neither? Justify your response.}$ Not One of the curve given by $f(x) = x^2 \ln x $ $f(-x) = (-x)^2 \ln -x $ $= f(x)$ When the your discourse of the curve of the curve given by $f(x) = x^2 \ln x $ $f(-x) = (-x)^2 \ln -x $ The students of the curve		The second term of an arit	hmetic sequence	is 12. The fifteenth to	erm is 64.	
well $ \begin{array}{cccccccccccccccccccccccccccccccccc$	H Tim	in augustion				3
64 = a + 168 - 4a $- 128a = 2$	nas	dore	12= a	$fd \rightarrow$		
Consider the curve given by $f(x) = x^2 \ln x $ Is $f(x) = x^2 \ln x $ an odd or an even function or neither? Justify your response. $f(x) = x^2 \ln x \text{Some students}$ $f(-x) = (-x)^2 \ln -x \text{left out a}$ $= f(x) when the years of the property of the property$	Mec	T15 = a + 1	4d			
Consider the curve given by $f(x) = x^2 \ln x $ Is $f(x) = x^2 \ln x $ an odd or an even function or neither? Justify your response. $f(x) = x^2 \ln x \text{Some students}$ $f(-x) = (-x)^2 \ln -x \text{left out a}$ $= f(x) when the years of the property of the property$		64 = a f	168-fa	2	= 8 + (2 = 8 + 6	R4/4)
Consider the curve given by $f(x) = x^2 \ln x $ Is $f(x) = x^2 \ln x $ an odd or an even function or neither? Justify your response. $f(x) = x^2 \ln x $ Some And the first out an example of the first out and the		-128z - 13	a	0		
Is $f(x) = x^2 \ln x $ an odd or an even function or neither? Justify your response. $f(x) = x^2 \ln x $ $f(-x) = (-x)^2 \ln -x $ $= x^2 \ln x $ $= x^2 \ln x $ When they also of the dorse of the property of the pro		Question 17 (5 marks)			25th tem	<i>y</i> 704.
$f(x) = x^{2} \ln x \qquad \text{Some students}$ $f(-x) = (-x)^{2} \ln -x \qquad \text{left out a}$ $= x^{2} \ln x \qquad \text{description}$ $= f(sc) \qquad \text{when they}$ $\text{variable of the absolute value}$ $\text{done } S = f(x) \text{ is an even function} \qquad \text{symbol}$		Consider the curve given l	$\operatorname{by} f(x) = x^2 \ln x $	κ		3
$f(-x) = (-x)^2 \ln -x $ $= x^2 \ln x $ $= f(xc)$ When they also when $x = x = x = x = x = x = x = x = x = x $		Is $f(x) = x^2 \ln x $ an odd	or an even functi	on or neither? Justify	your response.	
Not (x) is an even function symbol		f(x)=x	2 /0/2/		Sone stu	dets
Not (x) is an even function symbol		f(-x) = (-x) ² /n / -	x	j left o	vt a
done S +(n) is an even function symbol			22 /n/x		descript.) <i>O</i> n
done S +(n) is an even function symbol		Ε	f(sc)		when the	al grand
7 - +(n) is an even function symbol	Not	C	'''''		Janovel	of the value
well (gince f(-x) = f(x) losing ma	Otone	3 - · +(n)	is an	even funct	ion S	m bo 1
	WILL	Civile	f(-x) = ((x)	6	ling mar

Question 18 (8 marks)

The probability distribution for a discrete random variable X is given by $P(X = x) = \begin{cases} kx, & x = 1, 2, 3\\ k(6-x) & x = 4, 5, 6 \end{cases}$	probabilities and to 1
a. Show that $k = \frac{1}{9}$. Not $K + 2k + 3k + k (6-4) + k(6-5) + k(6-6)$ well $k + 2k + 3k + 2k + k + 0 = 1$ A Complete the Probability distribution table given below)=/
b. Complete the Probability distribution table given below.	2
Dorl X 1 2 3 4 5 6	
well $P(X=x)$ $\frac{1}{9}$ $\frac{2}{9}$ $\frac{2}{9}$ $\frac{1}{9}$ O	
c. Hence, calculate its expected value. $E(x) = 1x + 2x + 3x + 4x + 2 + 1$	2 5 6 x 0
Done well. $z = \frac{1}{9} + \frac{4}{9} + \frac{9}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9}$ $E(x) = 27 = 3 \qquad \therefore \mu = 3$	
d. Calculate the variance and the standard deviation correct to 2 decimal places. $ \sqrt{\chi} = \sqrt{\chi} \left(\frac{1}{\chi} \right) \sqrt{\chi} = \sqrt{\chi} $	2
Students did = $\begin{bmatrix} 1 & 4 & 4 & 7 & 7 & 7 & 7 & 16 \times 2 \\ 1 & 4 & 4 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\frac{4}{3}^{2} = 1.15 = $
# Overall, flis question most student	's correctles

of Students who did not use bogasitumic laws made the greation hader than it Should be. Question 19 (3 marks)

Using the logarithm laws, show that $\frac{d}{dx} \left(\ln \sqrt{\frac{1+x}{1-x}} \right) = \frac{1}{1-x^2}$ 3 $[HS=\frac{d}{dn} \ln \left(\frac{1+\chi}{1-\chi}\right)^{\frac{1}{2}} = \frac{1}{2} \ln \left(1+\chi\right) - \ln \left(1-\eta\right)$ $=\frac{1}{2}\left[\frac{1-x}{1+x}+\frac{1+x}{1-x}\right]$ $= \frac{1}{2} \left(\frac{2}{(1+x)(1-x)} \right)$ Method 2: Some students used the gnotient rule: but $d \ln f(x) = \frac{f(x)}{f(x)}$ * Students did not divide be 1 +x hence lost a mark.

Proceed to Answer Booklet 2 for Questions 20-24

Mathematics Advanced

Student Number Soltions
With teedback

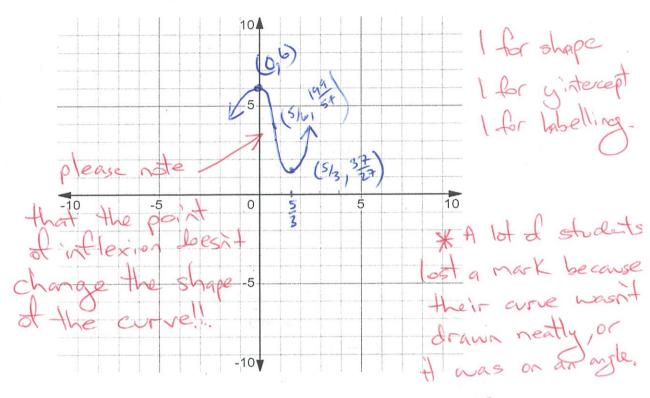
Section II Answer Booklet 2

Booklet 2 – Attempt Questions 20 – 26 (30 marks)

Instructions

- Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.
- Write your NESA ID above.

Differentia	ition	Integr	ation	Prob	ability	Fina	ies & ancial ematics	Stat	istics	Logar 8 Expon	ithms & ential
20 22a 26	/13	24	/5	25	/2	21	/2	23	/5	22b	/3


Please Turn Over

Question 20 (8 marks)

Consider the curve given by $f(x) = 2x^3 - 5x^2 + 6$.

a. Find the coordinates of the stationary points and determine for their nature. 3
$f'(\infty) = 6x^2 - 10x$
f''(x) = 12x - 10
state points when f'(x)=0
· 672-10x=0
2x(3x-5)=0
$-2 \times = 0$ or $x = 5/3$
when x=0,4=6: (0,6)
when 1 = 5/3, y= 37/27 (5/3, 37/27)
when x=0, f"(0) = -10 <0 when x=5/3, f"(5/3=10
: con cave down 70 con cave up imaximum at (0,6) iminimum at
: maximum at (0,6) concave up
1) for both derivatives correct (5/3, 39/27)
1) for state pts as coordinates, in (oc, y,) 9 (oc, y)
b. Find the coordinates of any point(s) of inflection.
possible points of inflexion when f'(x)=0
· 12x-10=0
$x = \frac{5}{6}$
when $x=\frac{5}{6}$ $f(\frac{5}{6})=2(\frac{9}{6})^3-5(\frac{9}{6})^2+6=\frac{199}{54}$
www x=1/6 - (1/6) - 2(1/6) - 5(1/6) - 54
26 2 76
f"(se) -4 0 2 : change in concentry
concentry down - up 15 - st. of inflexion at (5, 199)
concerty down - up 16 - pt. of intlexion at (5/6/54) XA lot of orderts forgot to test and show there was a change in
test and show there was a change in

c. Hence, sketch the curve labelling the stationary points, point(s) of inflection (if any) and y – intercept. Do Not determine the x – intercepts of the curve.

Question 21 (2 marks)

Consider the series given by $1 + 3x + 9x^2 + 27x^3 + \cdots$

a. Show that it is a geometric series.

* not doze T_3 = T_3 = T_4 + then it's a G.P. well. It is a geometric T_2 = 3x =

 $\frac{1}{3}$ \times $\frac{1}{3}$ \times

Question 22 (6 marks)

- a. Using the quotient rule, show that $\frac{d}{dx} \left(\frac{\cos x}{\sin x} \right) = -\cos ec^2 x$
 - U=cosic V=sinic V= U=cosic V= U=cosic V= +80000
 - 1/2 = 910x (-51000) C=50x (c=579)
 - = -3 m21 Cos3C
 - (1) = -1(512x + cosx) = alt of Students omitted
 - this step.

 Shire I need to see

 L=-cosecise both lines to get

 the final mark
- b. Evaluate $\int_5^8 \frac{x-2}{x^2-4x} dx$. Leave your answer in exact form.
 - $=\frac{1}{2}\int_{5}^{2}\frac{2\times -4}{x^{2}-4\times}dx = (+\frac{1}{5})dx$
 - = \frac{1}{2} \left[\left[\left(\frac{1}{2} 4 \right) \right] \left(\right) \text{ correct integration}
 - $= \frac{1}{2} \left[\ln \left(64 32 \right) \ln \left(25 20 \right) \right]$ $= \frac{1}{2} \left[\ln 32 \ln 5 \right)$
 - = 1 \n 35 () application of log laws.
 -

Question 23 (5 marks)

Six Penrith High School Year 12 Students participated in the javelin and discus throwing events at the Athletics Carnival this year. Their distances (in metres) were recorded in the table below.

Distance (Javelin)	Distance (Discus)
8	18
60	81
51	57
48	48
29	25
36	47
	8 60 51 48 29

The relationship between the two events is being examined. The distance thrown in javelin is the independent variable and the distance thrown in discus is the dependent variable.

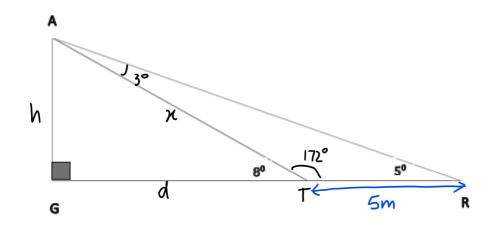
a.	Calculte the Pearson correlation coefficient, r, for the above data set correct to 3
	decimal places. Explain clearly what this value indicates in this context. Pear son correlation coefficient is r=0.927
<u>)</u>	strong positive and high correlation, indicates
b.	Calculate the equation of the least squres regression line, rounding numbers correct to 1 decimal place where necessary.
	$y = 2.3 + 1.1 \times$
	* Some stolents jest wrote 2.3 + 1.1x, this
	is an expression not an equation. Be more careful.

	c.	Saatvik concluded after the event that "Yesh was able to throw his javelin a greater
		distance because he threw his discus a greater distance, and being successful in one
		skill transferred to the other skill". Saatvik's statement may not be correct. Why?
		Although there's a strong postive
		celationship between the 2 skills
		indicated by 1=0,927, the ability to
		throw a javelin for doesn't mean in
		realty that you can throw a discus
	Questi	for It's 2 different types of "throws no"
	The ac	celeration of a particle at any time t is given by $\ddot{x} = 2\cos\frac{\pi t}{3}$.
	a.	Find the velocity and displacement of the particle at any time t , given that the particle is initially at rest at the origin.
		$\dot{x} = 2 \cos \pi t$ $\dot{x} = 2 \cos \pi t$ $\dot{x} = 2 \cos \pi t$
alot		$\infty = 2 \sin \frac{1}{3}t$ $K = \frac{18}{172}$
Grgot	this	$\dot{x} = 6 \text{ Sin Th} + 0 0$
	l	~ t=0 = 0 (C=0
		~~ \t=0, \tau=0 \(\).
	•••••	sie = = = Sin Tyt
		different constant of
	******	oc = -6 cos Tat + they have 2
		Att agent values
		2 = 10 cos 43t + K
15 80 16		when $t=0$, $x=0$
		$-1.0 = -18 \cos(0) + K$

	b. Find the time when the particle first returns to the origin.
	when $x=0, t=3?$
	-: 0 = -18 cos If + 18 The partide
	The Cos It = 18 Prot returns to the
	cos zt = 1 1 origin at t = 6 seconds
	$\sqrt{3} = 0.2\pi.4\pi$
	$\pi t = 0$, 6π , 12π — #If shelets had as wrong, they got carried forward errors here
	t=0,6,12, errors here
	Question 25 (2 marks)
	A survey of a certain district showed that 4% of the families have 1 child, 34% have 2 children,
	40% have 3 children, and 15% have more than 3 children. A family from the district is selected
	at random. Find the probability that the family will have at most 1 child.
	100%-4%-34%-40%-15%=7%
	P(at most 1 child) = 4% + 7% = 11% or = 1
	(0.11)
	Question 26 (2 marks)
	Show that the graph given by $f(x) = \frac{1}{1+e^{-x}}$, $x \ge 0$ is an increasing function for all values
	of x in the given domain.
	of x in the given domain. $f(x) = (1 + e^{-x})$ $f(x) = -1(1 + e^{-x})^{2} \times -e$ $f(x) = -1(1 + e$
	$f'(x) = -1(1+e^{-x})x - e$ (1+e ^{-x})>0 for all x.
	$\left(\int_{-\infty}^{\infty} = e^{-x} \left(1 + e^{-x}\right)^{-2} \right) = \sin \left(1 + e^{-x}\right)^{-2} $ since $f'(x) > 0$ for
	$= e^{-7l}$ $= e^{-7l}$ all x , the function $(1 + e^{-2l})^2$
(*)	(1+e-x)2 (is increasing.)
	Proceed to Answer Booklet 3 for Questions 26-31
	* this question was badly needed all of needed all of
	the 2nd mark.
	Proceed to Answer Booklet 3 for Questions 26-31 * This question was badly needed all of this needed all of this wery characters not the nonestatests set to get the 2nd mark. There write logically.

Mathematics Advanced Section II Answer Booklet 3

Student Number


Booklet 3 – Attempt Questions 27 – 32 (30 marks)

Instructions

- Answer the questions in the spaces provided.
 Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.
- Write your NESA ID above.

Differentiation		Trigonometry	Integration	Series & Financial Mathematics	
28	/5	/9 27 32	/8 29 30	/8	

Question 27 (4 marks)

Roberto, R in the World cup, knows that from his position directly in front of the goalkeeper, G, he must kick the ball through the point A to score a goal. If he runs the ball forward an extra five metres, his kicking angle increase from 5° to 8° .

a. Calculate Roberto's kicking distance to A, from the 8° mark, correct to 2 decimal places. 2

Sine rule:	χ	5	 Common mistakes:
	5in5	Sin 3	 - students calculated
	χ =	5 5in 5	hovizontal distance instead
		sin 3	of hypotenuse.
	=	g.33m	- Used simultaneous equations with two right analed triangles
			 with two right angled triangles

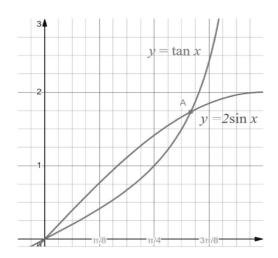
b. Find how far Roberto was from the goalkeeper at the 5° mark, correct to 1 decimal place. 2

$$6.32$$
 $6.32 \times 6.32 \times$

Question 28 (5 marks)

A farmer accidently spread a dangerous chemical on a paddock. The concentration of the chemical in the soil was initially measured at 5 kg/ha. One year later the concentration was found to be half of the initial concentration.

It is known that the concentration, C, is given by $C = C_0 e^{-kt}$, where C_0 and k are constants, and t is measured in years.


a. Evaluate C_0 and k . Leave your answers in exact forms		
When $t = 0$, $5 = C_0(1)$	/ I mavk	
$2.5 = 5e^{-k}$ when $t = 1$	for Co	
$0.5 = e^{-k}$		
- k = n 0.5	// 2 marks	
$k = -\ln 0.5 \longrightarrow k = \ln 2$	- For k both forms	accepte

b. It is safe to use the paddock when the concentration is below 0.2 kg/ha. How long must the farmer wait after the accident before the paddock can be used? Give your answer in years, correct to one decimal place.

$$0.2 = 5e^{\ln 0.5t}$$
 $e^{\ln 0.5t} = 0.2$
 5
 $e^{\ln 0.5t} = 0.04$
 $\ln e^{\ln 0.5t} = \ln 0.04$
 $\ln 0.5t = \ln 0.$

t=4.7 years is more appropriate.

Question 29 (4 marks)

The diagram above shows the curves $y = \tan x$ and $y = 2 \sin x$ for $0 \le x \le \frac{\pi}{2}$.

a. Show that the coordinates of A are $\left(\frac{\pi}{3}, \sqrt{3}\right)$.

Sub ($\sqrt[7]{3}$, $\sqrt{3}$) into y=tanx. LHS = $\sqrt{3}$, RHS = tan($\sqrt[7]{3}$) = $\sqrt{3}$ = LHS

Sub ($\sqrt[4]{3}$, $\sqrt{3}$) into $y = 2\sin x$, LHG = $\sqrt{3}$, RHG = $2\sin \left(\frac{1}{3}\right) = 2\sqrt{3} = LHS$

b. Show that $\frac{d}{dx}(\ln \cos x) = -\tan x$.

 $\frac{-\sin x}{\cos x} = -\tan x$

Hence find the case between $x = \tan x$ and $x = 2 \sin x$ for $0 < x < \pi$

e. Hence, find the area between $y = \tan x$ and $y = 2 \sin x$ for $0 \le x \le \frac{\pi}{2}$.

From part (a)

(T/3 2 Sin x - tan x dx

 $= -2 \left[\cos x \right]_{0}^{1/3} + \left[\ln \cos x \right]_{0}^{1/3} \text{ using part (b)}$

 $= -2[\cos(\pi_3) - \cos 0] + [\ln \cos^{\pi_3} - \ln \cos 0]$

 $= -2\left[\frac{1}{2}-1\right] + \left[\ln\left(\frac{1}{2}\right)\right]$

 $= 1 - \ln 2$

(ommon mistake:

- · 2 sinx is in front of tanx.
- · students converted (- tank)
 INTO (- INCOSX)

Question 30 (4 marks)

Complete the table below for $y = \sqrt{\cos x}$. a.

1	mark	
-	for each	
	pair.	

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
у	1	0.961	0.841	0.691	4
				1	

Hence estimate $\int_0^{\frac{\pi}{2}} \sqrt{\cos x} \ dx$ using the trapezoidal rule with 4 applications. b.

2

2

$$\int_{0}^{\pi/2} \int_{0.5 \times dx} dx = \frac{\pi/2 - 0}{2(4)} \left[(1-0) + 2(0.961 + 0.641 + 0.641) \right]$$
Some students
$$\int_{0}^{\pi/2} \int_{0.5 \times dx} dx = \frac{\pi/2 - 0}{2(4)} \left[(1-0) + 2(0.961 + 0.641 + 0.641) \right]$$
and got the $\frac{b-g}{2n} = \frac{\pi}{16} \left[(1) + 2(2.421) \right]$

$$=\frac{\pi}{16}[(1)+2(2.421)]$$

incorrect.

$$= \frac{\pi}{16} (5.842) u^2$$

$$= 1.1471 u^2$$

Question 31 (8 marks)

Mr Pollard borrowed \$500 000 from his bank to buy an apartment. The loan is to be repaid in equal monthly instalments. The interest rate is 8.4% p.a., calculated monthly.

Show that the interest for the first month is \$3500.

1

500 000 (1.007) = \$503.500

b.	Why is it not advisable that Mr Pollard's monthly repayments be \$	3500? 1					
	his means he will not pay off and of	The loan					
	amount, and amount owing on the loan remains The same. Students answers were vague and did not address the application context.						
c.	Mrs Briggs thinks Mr Pollard should cut down on his unnecessary expenses and budget himself to pay \$5000 per month off the loan.						
	Show that $A_2 = 500000 \times 1.007^2 - 5000(1 + 1.007)$. where A_2 owing after two repayments,	is the amount 3					
	A,= 500000 (1007) - 5000						
<i>)</i> :	$A_2 = A_1 (1.007) - 5000$	Mogtly we 1					
	$= 500000 (1.007)^2 - 5000 (1.007) - 5000$	done.					
		Eaglest 3					
A	2= A, x (1.007) - 5000	marker.					
••••	$= 500000 (1.007)^2 - 5000 (1.007) - 5000$						
	$= 500000 (1.007)^2 - 5000 (1+1.007)$						
	Hence, find an expression for A_n , the amount owing after the <i>n</i> th re $A_n = 500000 (1.007)^N - 5000 (1++$						
		Mostly well done					
••••							
	28	needed to-					

e. How long will it take for Mr Pollard to pay off the loan?

2

$$A_{n} = 0$$

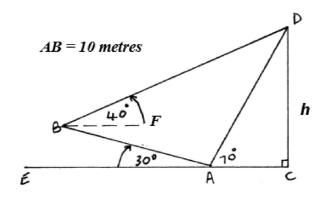
$$0 = 500 000 (1.007)^{n} - 5000 (1 + 1.007)^{n-1}$$

$$0 = 500000 (1.007)^{n} - 5000 (1.007)^{n} - 1000 (1.007)^{n}$$

$$5000 \times (1.007)^{n} - 10 = 500000 (1.007)^{n} = 714285.7143$$

$$(1.007)^{n} = 3\frac{1}{3}$$

$$(1.007)^{n} = 3\frac{1}{3}$$


$$(1.007)^{n} = 3\frac{1}{3}$$

$$(1.007)^{n} = 172.597$$

$$= 173 \text{ months}$$

$$= 173 \text{ months}$$

Lina is standing on a footpath at point A. From this position she looks up to the top of a vertical tower, CD, at an angle of elevation of 70° . Lina then turns around and walks up 10 m up a ramp AB, inclined at an angle of 30° to the horizontal footpath. From her new position, B, the top of the tower is observed at an angle of elevation of 40° . This information is shown in the diagram below.

a. Find the size of $\angle ABD$, and of $\angle BDA$. DO NOT provide any reasons.	2
∠ABO = 70°	Well done
∠ BDA = 180-8U-70	
= 30°	
h Eind the length of AD	2
b. Find the length of AD .	2
Sine rule: AD = 10	
51N70 51N30	
AD = 10 x 51 N 70	Well done
5in 30	
An = 18.79 m	
c. Hence, find the height of the tower correct to 1 decimal place.	1
sin70 = h_	
18.79	CFG if
h = 18.79 sin70	needed
= 17.66m	
= 17.7m	